- Look at the picture below! If the length of arc AB is equal to twice the length of radius r of the circle, the area of sector OAB in terms of the radius r will be equal to .....
A. ½r2 B. r2 C. 2r2 D. 4r2
Solution :
The area of sector AOB can be calculated by this formula :
⇒ Area AOB = angle AOB .Area of circle 360o ⇒ Area AOB = angle AOB .πr2 360o
Now, we must find the angle AOB first.
⇒ Length of arc AB = radius x angle AOB
⇒ 2r = r. angle AOB
⇒ Angle AOB = 2 radians
⇒ Angle AOB = 2⁄π.180o
Now, back to the formula above :
⇒ Area AOB = 2⁄π.180o .πr2 360o ⇒ Area AOB = 2⁄π.1 .πr2 2 ⇒ Area AOB = 1 .πr2 π ⇒ Area AOB = r2
Answer : B - The angle of a sector in a given circle is 60 degrees and the area of the sector is equal to 18,84 cm2. Calculate the arc length of the sector.
A. 6,00 cm D. 6,44 cm B. 6,02 cm E. 6,82 cm C. 6,28 cm
Solution :
First, we can calculate the radius r by the formula below :
⇒ Area of sector = 60o .πr2 360o ⇒ 18,84 = 1 .πr2 6 ⇒ 113,04 = 3,14 r2
⇒ r2 = 36
⇒ r = 6 cm.
The arc length of the sector :
⇒ arc length of sector = radius x angle AOB
⇒ arc length of sector = 60⁄180.π x 6 cm
⇒ arc length of sector = 6,28 cm.
Answer : C - The angle of a sector in a given circle is 45 degrees and the radius is 8 cm. The area of sector is equal to .....
A. 25,12 cm2 D. 26,22 cm2 B. 25,42 cm2 E. 26,52 cm2 C. 25,68 cm2
Solution :
⇒ Area of sector = angle of sector .Area of circle 360o ⇒ Area of sector = 45o .(3,14)(8)2 360o ⇒ Area of sector = 1 .(200,96) 8 ⇒ Area of sector = 25,12 cm2.
Answer : A
Sunday, May 24, 2015
SOLVING SECTORS AND CIRCLES PROBLEMS
Labels:
MATHEMATIC
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment