- The vectors A and B are given by A = 3i + 5j − 4k and B = 8i − 4j + k. The angle between the two vectors is ......
A. 90o D. 37o B. 60o E. 30o C. 45o Solution :To find the angle between two vectors, we can use the dot product formula. The dot product (the scalar product) of two vectors is defined by :
A.B = |A|.|B| cos θ
With :
|A| = the magnitude of vector A
|B| = the magnitude of vector B
θ = the angle between vectors A and B.
According to the formula above :
⇒ A.B = |A|.|B| cos θ
⇒ A.B = |A|.|B| cos θ
⇒ (3i + 5j − 4k).(8i − 4j + k) = |A|.|B| cos θ
⇒ 3(8) + 5(-4) + (-4)(1) = |A|.|B| cos θ
⇒ 24 − 20 − 4 = |A|.|B| cos θ
⇒ 0 = |A|.|B| cos θ
⇒ cos θ = 0
⇒ θ = 90o
Answer : A - The angle between u = i + √2 j + √5 k and v = i − √2 j + √5 k is .....
A. 90o D. 30o B. 60o E. 15o C. 45o Solution :
According to the dot product formula :
⇒ u.v = |u|.|v| cos θ
⇒ u.v = |u|.|v| cos θ
⇒ (i + √2 j + √5 k).(i − √2 j + √5) = |u|.|v| cos θ
⇒ 1 − 2 + 5 = √1 + 2 + 5.√1 + 2 + 5 cos θ
⇒ 4 = 8 cos θ
⇒ cos θ = ½
⇒ θ = 60o.
Answer : B - The vectors A and B are given by A = 2i − j − 3k, and B = pi + j − k. If the two vectors are perpendicular to each other, the value of p is .....
A. -2 D. 2 B. -1 E. 3 C. 1 Solution :
Since the two vectors are perpendicular to each other, so the angle between them is 90o. According to scalar product formula :
⇒ a.b = |a|.|b| cos θ
⇒ a.b = |a|.|b| cos 90o
⇒ (2i − j − 3k).(pi + j − k) = |a|.|b| (0)
⇒ 2(p) + (-1)(1) + (-3)(-1) = 0
⇒ 2p − 1 + 3 = 0
⇒ 2p + 2 = 0
⇒ 2p = -2
⇒ p = -1
Answer : B
Sunday, May 24, 2015
FIND THE ANGLE BETWEEN TWO VECTORS
Labels:
MATHEMATIC
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment