Sunday, May 24, 2015

FIND THE ANGLE BETWEEN TWO VECTORS

  1. The vectors A and B are given by A = 3i + 5j − 4k and B = 8i − 4j + k. The angle between the two vectors is ......
    A. 90oD. 37o
    B. 60oE. 30o
    C. 45o

    Solution :
    To find the angle between two vectors, we can use the dot product formula. The dot product (the scalar product) of two vectors is defined by : 

    A.B = |A|.|B| cos θ

    With :
    |A| = the magnitude of vector A
    |B| = the magnitude of vector B
    θ = the angle between vectors A and B.

    According to the formula above :
    ⇒ A.B = |A|.|B| cos θ
    ⇒ A.B = |A|.|B| cos θ
    ⇒ (3i + 5j − 4k).(8i − 4j + k) = |A|.|B| cos θ
    ⇒ 3(8) + 5(-4) + (-4)(1) = |A|.|B| cos θ
    ⇒ 24 − 20 − 4 = |A|.|B| cos θ
    ⇒ 0 = |A|.|B| cos θ
    ⇒ cos θ = 0
    ⇒ θ = 90o
    Answer : A

  2. The angle between u = i + √2 j + √5 k and v = i − √2 j + √5  k is .....
    A. 90oD. 30o
    B. 60oE. 15o
    C. 45o

    Solution :
    According to the dot product formula :
    ⇒ u.v = |u|.|v| cos θ
    ⇒ u.v = |u|.|v| cos θ
    ⇒ (i + √2 j + √5 k).(i − √2 j + √5) = |u|.|v| cos θ
    ⇒ 1 − 2 + 5 = √1 + 2 + 5.√1 + 2 + 5 cos θ
    ⇒ 4 = 8 cos θ
    ⇒ cos θ = ½
    ⇒ θ = 60o.
    Answer : B

  3. The vectors A and B are given by A = 2i − j − 3k, and B = pi + j − k. If the two vectors are perpendicular to each other, the value of p is .....
    A. -2D. 2
    B. -1E. 3
    C. 1

    Solution :
    Since the two vectors are perpendicular to each other, so the angle between them is 90o. According to scalar product formula :
    ⇒ a.b = |a|.|b| cos θ
    ⇒ a.b = |a|.|b| cos 90o
    ⇒ (2i − j − 3k).(pi + j − k) = |a|.|b| (0)
    ⇒ 2(p) + (-1)(1) + (-3)(-1) = 0
    ⇒ 2p − 1 + 3 = 0
    ⇒ 2p + 2 = 0
    ⇒ 2p = -2
    ⇒ p = -1
    Answer : B


No comments:

Post a Comment